W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Building Connections &
Compiler Phases

Building People Connections in College, Exploring the

Compiler Phases, Project 7 Overview

YA/ UNIVERSITY of WASHINGTON

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

< Building People Connections in College
= Benefits of Building Connections, Networking Strategies

<% Exploring the Compiler Phases

= Scanner: Process of Tokenizing an Input File
= Parser: Making Meaning From Tokens Through ASTs
= Type Checking, Optimization, and Code Generation

< Project 7 Overview
= Midterm Corrections, Professor Meeting Report

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Benefits of Building Connections

<+ Reaching out to your professors, TAs, and peers can be a
great way to discover opportunities

< Taking the time to connect with these people can open
several doors and leverage your potential

<% Excellent opportunity for new perspectives and ideas for
those who have been in your shoes before

<% Connecting with others helps you find inspiration and
build your knowledge and experience

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Strategies for Networking

<% Get involved in communities on campus (e.g., RSOs,
TAing, research, part-time campus job)

< Invest in building relationships with people and
developing a presence in their lives

<+ Take time to reflect on how others can support you by
bringing to them your interests and questions

<+ Not all networking efforts will be well-received, but don’t
be afraid to just go for it

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Discussion on Building Connections

In groups, spend 4-6 minutes discussing these questions:

<+ In what ways do you already connection with others on a
regular basis? How else can you build your connections?

<% How can you benefit from building your community of
people you can network with?

<+ What would you share with someone you recently made a
connection with?

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

< Building People Connections in College
= Benefits of Building Connections, Networking Strategies

<% Exploring the Compiler Phases

= Scanner: Process of Tokenizing an Input File
= Parser: Making Meaning From Tokens Through ASTs
= Type Checking, Optimization, and Code Generation

< Project 7 Overview
= Midterm Corrections, Professor Meeting Report

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner FUNCTION VOID ID (main)
function void main() { D00 e e
var int a, bar; -
let bar=10; // init (a) - ()
} SEMICOLON ID (bar)
Jack
EQUALS NUM(10) SEMICOLON
RCURLY

Scanner

Token Stream

< Reads a giant string, breaks down into tokens
= Each token has a type: what role does this token play?
* E.g, is a type representing an occurrence of “{“
= What types do we care about? The “building blocks” of our
programming language:
* Keywords (e.g.,), operators (e.g., BEEEEN), and
punctuation (e.g., g comua)

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner
function void main() {

it maett; oD
} Jack

Scanner
Token Stream

< In addition to a type, some tokens carry a value:
= |dentifiers (e.g.,)
= Numbers (e.g.,)

<% Scanner should present a clean token stream

= No whitespace or comments: the rest of the compiler only wants
to consider things that change program meaning

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

function void main() {
e e
} Jack

Scanner

Token Stream

<+ What if we split the input program on whitespace, and
match each segment to a token type? (E.g., “{“ - LCURLY)

<% Tempting, but we would end up with “a,” “bar;” “bar=10;"
= Whitespace is tricky: generally, we want to ignore it, but we can’t
count on it being there

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

!
; let bar=10;

J@gk
Accumulated: | ;

Token Stream

<% How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
= When token is done, check against list of keywords

10

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

!
; let bar=10;

Jack
Accumulated: | ;

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

11

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack
Accumulated:

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

12

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack
Accumulated: | 1

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

13

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

¢

; let bar=10;

Jack
Accumulated: 1le

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

14

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack
Accumulated: let

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

15

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated:

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

16

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated: | b

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

17

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated: | ba

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

18

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated: bar

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

19

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated: =

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

20

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

J

; let bar=10;

Jack

Accumulated: | 1

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

21

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated: | 10

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

22

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated: | ;

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

23

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

curr

4

; let bar=10;

Jack

Accumulated:

Token Stream

% How can we take a line of code in Jack and convert this

into a token stream?

= Keep cursor on current char

= Break off a token when we complete one

= |f the next char could be part of this token, accumulate it

24

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: Why?

<+ Fundamentally: The compiler can’t reason about a

massive string, so we need to boil it down to its meaning
= A great place to start is grouping characters that form a “word”

<+ Engineering-wise: Separation of concerns
= A stream of tokens is an important abstraction for many file-
processing tasks, not just compiling
= Cleaning away whitespace and comments makes rest of compiler
simpler

25

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

< Building People Connections in College
= Benefits of Building Connections, Networking Strategies

<% Exploring the Compiler Phases

= Scanner: Process of Tokenizing an Input File
= Parser: Making Meaning From Tokens Through ASTs
= Type Checking, Optimization, and Code Generation

< Project 7 Overview
= Midterm Corrections, Professor Meeting Report

26

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Parser

condition

LESSTHAN ASSIGN

Abstract Syntax Tree

Parser

Token Stream

Y/
%*

(g

S

Takes in the flat token stream and outputs a structured
tree representation of program constructs

Result: an Abstract Syntax Tree
= Captures the structural features of the program

= |mportant distinction: cares about _ (E.g., entire
i f statement) rather than _ (E.g., semicolons,

parentheses, even word “if” used to write that 1 £ statement)

27

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Parser: How?

LESSTHAN

condition

LESSTHAN ASSIGN

)

:
ol &
=8 K=
11
7N B

ID (x)
Abstract Syntax Tree

NUM (2) SEMICOLON

Parser

Token Stream

Y/
%*

Like scanner: single pass-through token stream, building up
as we go

Y/
%*

Intuition: If we see and , We are entering an

if statement and next we must see a complete expression
= Keep reading until we have a complete expression (recursively
parse that) and attach on the condition side of the

28

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Describing a Programming Language

<% Many ways to define programming languages, some formal

= We won’t cover language definition in depth
= See CSE 341, CSE 401, CSE 402

<+ Example: Statements vs. Expressions

Statements
Perform an action

Expressions
Evaluate to a result

% Assignment Statement < Operators
X =y X == 0,‘
< If Statement < Variable
if (x == 0) { x
X =y;

% Constant

I 24

29

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Describing a Programming Language

<% These broad categories lend themselves well to recursive

definitions
= Easily express all possible configurations of the language
constructs
Symbolic General Definition of Token Stream
Example an if Statement Definition
i (k== 0) (| af ((EEs) (g EEEE
X =Y t{ " mxeressTon ! [N
} - Py | sarmi
—_ Comatmant L.

30

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

< Building People Connections in College
= Benefits of Building Connections, Networking Strategies

<% Exploring the Compiler Phases

= Scanner: Process of Tokenizing an Input File
= Parser: Making Meaning From Tokens Through ASTs
= Type Checking, Optimization, and Code Generation

< Project 7 Overview
= Midterm Corrections, Professor Meeting Report

31

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Type Checking (Semantic Analysis)

<% Given the abstract syntax tree, run checks over it to

ensure that it fits within constraints of the language
= Do the types match up?

< Collect additional info for code generation, such as
number and the type of arguments in each function

5 . condition body
Does this expression /\
evaluate to a Boolean?
ly\right le%\ght

Abstract Syntax Tree 35

Is the variable “x” defined
at this point?

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Optimization

<+ Code improvement: change correct code into
semantically equivalent but “better” code

% Example: If something is computed every iteration of a
while loop, the compiler could yank that computation out

and compute it just once before entering the loop
= Here, “better” means faster

< But requires caution: what if the value changes on each

iteration of the loop?
= “Semantically equivalent” means user sees same outcome

33

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Code Generation

< One way to think of compiler is converting from string in
source language to - its actual, abstract “meaning”

< Code generation is converting that “meaning” into a string
in the destination language

<% At its core, all that the code generation phase does is read
through the Abstract Syntax Tree and print a set of
statements depending on the AST node

34

YA/ UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases

Lecture Outline

<% Midterm Debrief
= Grading Observations and Next Steps

< Introduction to Compilers

= Scanner: Process of Tokenizing an Input File
= Parser: Making Meaning From Tokens Through ASTs
= Type Checking, Optimization, and Code Generation

<% Project 7 Overview
= Midterm Corrections, Professor Meeting Report

CSE 390B, Autumn 2022

35

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Project 7 Overview

< Part |: Midterm Corrections

= Due on 11/23 (Wednesday) at 11:59pm (no late days can be used
on this part)

= Open-notes, open-tools

= Only need to redo the problems that you missed

= After midterm corrections, your midterm grade will be updated to
be the average of your original midterm score and your redo score

= Reach out to the course staff for support

< Part Il: Professor Meeting Report
= Due in two weeks on 12/1 at 11:59pm
= Schedule the meeting as early as possible
= Please do not tell your professor this is for an assignment

36

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Project 7, Part I: Midterm Corrections

% Review feedback from the course staff, celebrate the
qguestions you got right, reflect on which areas you can
continue to grow in

< If you think a problem was graded incorrectly, feel free to

submit a regrade request on Gradescope

= Don’t be afraid to challenge our grading
= Thisis a great learning opportunity for us all

< You can earn up to 50% of the points back that you missed
on the midterm

37

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Professor Meeting Report Discussion

In groups, spend 4-6 minutes discussing these questions:

<% Which professors are you thinking about reaching out to?
Why do you choose them?

<+ What questions would you ask to your professor? Why did
you choose those questions?

<% How can you apply the skill of meeting with professors in
different contexts to help you succeed as a UW student? In
your career?

38

W UNIVERSITY of WASHINGTON Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture 15 Reminders

<+ Project 6: Mock Exam Problem & Building a Computer
due tonight (11/17) at 11:59pm

< Project 7: Midterm Corrections & Professor Meeting

Report released, due next Wednesday (11/23) at 11:59pm
= FEric will host an extra office hours next Tuesday (11/22) at 1:30pm

<% Course staff support
= Eric has office hours in CSE2 153 today after lecture
= Feel free to post your questions on the Ed board as well

39

