
Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Building Connections &
Compiler Phases

Building People Connections in College, Exploring the
Compiler Phases, Project 7 Overview

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

❖ Building People Connections in College
▪ Benefits of Building Connections, Networking Strategies

❖ Exploring the Compiler Phases
▪ Scanner: Process of Tokenizing an Input File
▪ Parser: Making Meaning From Tokens Through ASTs
▪ Type Checking, Optimization, and Code Generation

❖ Project 7 Overview
▪ Midterm Corrections, Professor Meeting Report

2

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Benefits of Building Connections

❖ Reaching out to your professors, TAs, and peers can be a
great way to discover opportunities

❖ Taking the time to connect with these people can open
several doors and leverage your potential

❖ Excellent opportunity for new perspectives and ideas for
those who have been in your shoes before

❖ Connecting with others helps you find inspiration and
build your knowledge and experience

3

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Strategies for Networking

❖ Get involved in communities on campus (e.g., RSOs,
TAing, research, part-time campus job)

❖ Invest in building relationships with people and
developing a presence in their lives

❖ Take time to reflect on how others can support you by
bringing to them your interests and questions

❖ Not all networking efforts will be well-received, but don’t
be afraid to just go for it

4

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Discussion on Building Connections

In groups, spend 4-6 minutes discussing these questions:

❖ In what ways do you already connection with others on a
regular basis? How else can you build your connections?

❖ How can you benefit from building your community of
people you can network with?

❖ What would you share with someone you recently made a
connection with?

5

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

❖ Building People Connections in College
▪ Benefits of Building Connections, Networking Strategies

❖ Exploring the Compiler Phases
▪ Scanner: Process of Tokenizing an Input File
▪ Parser: Making Meaning From Tokens Through ASTs
▪ Type Checking, Optimization, and Code Generation

❖ Project 7 Overview
▪ Midterm Corrections, Professor Meeting Report

6

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

❖ Reads a giant string, breaks down into tokens
▪ Each token has a type: what role does this token play?

• E.g., is a type representing an occurrence of “{“
▪ What types do we care about? The “building blocks” of our

programming language:
• Keywords (e.g.,), operators (e.g.,), and

punctuation (e.g., or)

The Scanner

7

Scanner

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

FUNCTION EQUALS

SEMICOLON COMMA

LCURLY

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

❖ In addition to a type, some tokens carry a value:
▪ Identifiers (e.g.,)
▪ Numbers (e.g.,)

❖ Scanner should present a clean token stream
▪ No whitespace or comments: the rest of the compiler only wants

to consider things that change program meaning

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

The Scanner

8

Scanner

ID(a)

NUM(10)

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

9

❖ What if we split the input program on whitespace, and
match each segment to a token type? (E.g., “{“ → LCURLY)

❖ Tempting, but we would end up with “a,” “bar;” “bar=10;”
▪ Whitespace is tricky: generally, we want to ignore it, but we can’t

count on it being there

Scanner

function void main() {
var int a, bar;
let bar=10; // init

}
Jack

Token Stream

FUNCTION VOID ID(main)

LPAREN RPAREN LCURLY VAR

INT ID(a) COMMA ID(bar)

SEMICOLON

NUM(10)

LET

EQUALS

ID(bar)

SEMICOLON

RCURLY

The Scanner: How?

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

10

; let bar=10;
Jack

Token Stream

curr

Accumulated: ;

❖ How to distinguish built-in keywords (e.g., “let”) from
identifiers (e.g., “bar”)?
▪ When token is done, check against list of keywords

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

11

; let bar=10;
Jack

Token Stream

curr

Accumulated: ;

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

12

; let bar=10;
Jack

Token Stream

curr

Accumulated:

SEMICOLON

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

13

; let bar=10;
Jack

Token Stream

curr

Accumulated: l

SEMICOLON

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

14

; let bar=10;
Jack

Token Stream

curr

Accumulated: le

SEMICOLON

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

15

; let bar=10;
Jack

Token Stream

curr

Accumulated: let

SEMICOLON

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

16

; let bar=10;
Jack

Token Stream

curr

Accumulated:

SEMICOLON LET

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

17

; let bar=10;
Jack

Token Stream

curr

Accumulated: b

SEMICOLON LET

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

18

; let bar=10;
Jack

Token Stream

curr

Accumulated: ba

SEMICOLON LET

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

19

; let bar=10;
Jack

Token Stream

curr

Accumulated: bar

SEMICOLON LET

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

20

; let bar=10;
Jack

Token Stream

curr

Accumulated: =

SEMICOLON LET ID(bar)

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

21

; let bar=10;
Jack

Token Stream

curr

Accumulated: 1

SEMICOLON LET ID(bar)

EQUALS

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

22

; let bar=10;
Jack

Token Stream

curr

Accumulated: 10

SEMICOLON LET ID(bar)

EQUALS

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

23

; let bar=10;
Jack

Token Stream

curr

SEMICOLON LET ID(bar)

Accumulated: ;

EQUALS NUM(10)

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: How?

24

; let bar=10;
Jack

Token Stream

curr

SEMICOLON LET ID(bar)

EQUALS NUM(10)

Accumulated:

SEMICOLON

❖ How can we take a line of code in Jack and convert this
into a token stream?
▪ Keep cursor on current char
▪ Break off a token when we complete one
▪ If the next char could be part of this token, accumulate it

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Scanner: Why?

❖ Fundamentally: The compiler can’t reason about a
massive string, so we need to boil it down to its meaning
▪ A great place to start is grouping characters that form a “word”

❖ Engineering-wise: Separation of concerns
▪ A stream of tokens is an important abstraction for many file-

processing tasks, not just compiling
▪ Cleaning away whitespace and comments makes rest of compiler

simpler

25

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

❖ Building People Connections in College
▪ Benefits of Building Connections, Networking Strategies

❖ Exploring the Compiler Phases
▪ Scanner: Process of Tokenizing an Input File
▪ Parser: Making Meaning From Tokens Through ASTs
▪ Type Checking, Optimization, and Code Generation

❖ Project 7 Overview
▪ Midterm Corrections, Professor Meeting Report

26

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Parser

❖ Takes in the flat token stream and outputs a structured
tree representation of program constructs

❖ Result: an Abstract Syntax Tree
▪ Captures the structural features of the program
▪ Important distinction: cares about big-picture syntax (E.g., entire
if statement) rather than nitty-gritty syntax (E.g., semicolons,
parentheses, even word “if” used to write that if statement) 27

Token Stream

IF

Abstract Syntax Tree

IF

ASSIGN

ID(x) NUM(2)

LESSTHAN

ID(x) NUM(2)

LPAREN ID(x)

LESSTHAN NUM(2)

RPAREN LCURLY

ID(x) EQUALS

NUM(2) SEMICOLON

Parser

condition body

left rightleft right

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

The Parser: How?

❖ Like scanner: single pass-through token stream, building up
as we go

❖ Intuition: If we see and , we are entering an
if statement and next we must see a complete expression
▪ Keep reading until we have a complete expression (recursively

parse that) and attach on the condition side of the
28

Token Stream

IF LPAREN ID(x)

LESSTHAN NUM(2)

RPAREN LCURLY

ID(x) EQUALS

NUM(2) SEMICOLON

Parser

IF LPAREN

IF

Abstract Syntax Tree

IF

ASSIGN

ID(x) NUM(2)

LESSTHAN

ID(x) NUM(2)

condition body

left rightleft right

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Describing a Programming Language

❖ Many ways to define programming languages, some formal
▪ We won’t cover language definition in depth
▪ See CSE 341, CSE 401, CSE 402

❖ Example: Statements vs. Expressions

29

Statements
Perform an action

Expressions
Evaluate to a result

❖ Assignment Statement
x = y;

❖ If Statement
if (x == 0) {

x = y;
}

❖ Operators
x == 0;

❖ Variable
x

❖ Constant
24

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Describing a Programming Language

❖ These broad categories lend themselves well to recursive
definitions
▪ Easily express all possible configurations of the language

constructs

30

Symbolic
Example

if (x == 0) {
x = y;

}

General Definition of
an if Statement

if ()
{

}

EXPRESSION

STATEMENT

STATEMENT

...

Token Stream
Definition

EXPRESSION

IF LPAREN

RPAREN

LCURLY

RCURLY

STATEMENT

STATEMENT ...

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

❖ Building People Connections in College
▪ Benefits of Building Connections, Networking Strategies

❖ Exploring the Compiler Phases
▪ Scanner: Process of Tokenizing an Input File
▪ Parser: Making Meaning From Tokens Through ASTs
▪ Type Checking, Optimization, and Code Generation

❖ Project 7 Overview
▪ Midterm Corrections, Professor Meeting Report

31

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Type Checking (Semantic Analysis)

❖ Given the abstract syntax tree, run checks over it to
ensure that it fits within constraints of the language
▪ Do the types match up?

❖ Collect additional info for code generation, such as
number and the type of arguments in each function

32Abstract Syntax Tree

IF

ASSIGN

ID(x) NUM(2)

LESSTHAN

ID(x) NUM(2)

condition body

left rightleft right

Does this expression
evaluate to a Boolean?

Is the variable “x” defined
at this point?

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Optimization

❖ Code improvement: change correct code into
semantically equivalent but “better” code

❖ Example: If something is computed every iteration of a
while loop, the compiler could yank that computation out
and compute it just once before entering the loop
▪ Here, “better” means faster

❖ But requires caution: what if the value changes on each
iteration of the loop?
▪ “Semantically equivalent” means user sees same outcome

33

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Code Generation

❖ One way to think of compiler is converting from string in
source language to → its actual, abstract “meaning”

❖ Code generation is converting that “meaning” into a string
in the destination language

❖ At its core, all that the code generation phase does is read
through the Abstract Syntax Tree and print a set of
statements depending on the AST node

34

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture Outline

❖ Midterm Debrief
▪ Grading Observations and Next Steps

❖ Introduction to Compilers
▪ Scanner: Process of Tokenizing an Input File
▪ Parser: Making Meaning From Tokens Through ASTs
▪ Type Checking, Optimization, and Code Generation

❖ Project 7 Overview
▪ Midterm Corrections, Professor Meeting Report

35

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Project 7 Overview

❖ Part I: Midterm Corrections
▪ Due on 11/23 (Wednesday) at 11:59pm (no late days can be used

on this part)
▪ Open-notes, open-tools
▪ Only need to redo the problems that you missed
▪ After midterm corrections, your midterm grade will be updated to

be the average of your original midterm score and your redo score
▪ Reach out to the course staff for support

❖ Part II: Professor Meeting Report
▪ Due in two weeks on 12/1 at 11:59pm
▪ Schedule the meeting as early as possible
▪ Please do not tell your professor this is for an assignment

36

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Project 7, Part I: Midterm Corrections

❖ Review feedback from the course staff, celebrate the
questions you got right, reflect on which areas you can
continue to grow in

❖ If you think a problem was graded incorrectly, feel free to
submit a regrade request on Gradescope
▪ Don’t be afraid to challenge our grading
▪ This is a great learning opportunity for us all

❖ You can earn up to 50% of the points back that you missed
on the midterm

37

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Professor Meeting Report Discussion

In groups, spend 4-6 minutes discussing these questions:

❖ Which professors are you thinking about reaching out to?
Why do you choose them?

❖ What questions would you ask to your professor? Why did
you choose those questions?

❖ How can you apply the skill of meeting with professors in
different contexts to help you succeed as a UW student? In
your career?

38

Lecture 15: Building Connections & Compiler Phases CSE 390B, Autumn 2022

Lecture 15 Reminders

❖ Project 6: Mock Exam Problem & Building a Computer
due tonight (11/17) at 11:59pm

❖ Project 7: Midterm Corrections & Professor Meeting
Report released, due next Wednesday (11/23) at 11:59pm
▪ Eric will host an extra office hours next Tuesday (11/22) at 1:30pm

❖ Course staff support
▪ Eric has office hours in CSE2 153 today after lecture
▪ Feel free to post your questions on the Ed board as well

39

